Cleaned up the selcal-detect.py file, so I understand it better

This commit is contained in:
Jono Targett 2024-05-29 22:03:59 +09:30
parent b65fa14f5e
commit cd83d1683b
2 changed files with 32 additions and 71 deletions

View File

@ -1,20 +1,35 @@
import numpy as np
from scipy.signal import butter, lfilter, decimate
def anti_alias(data, sample_rate, max_frequency):
FILTER_HEADROOM = 1.2
nyquist_rate = 2 * max_frequency
downsample_factor = 1
if sample_rate > nyquist_rate:
filtered_data = lowpass_filter(data, max_frequency, sample_rate)
filtered_data = lowpass_filter(data, max_frequency * FILTER_HEADROOM, sample_rate)
downsample_factor = int(sample_rate / nyquist_rate)
filtered_data = decimate(filtered_data, downsample_factor)
sample_rate = sample_rate // downsample_factor
else:
filtered_data = data
return filtered_data, sample_rate
return filtered_data, sample_rate, downsample_factor
def smoothing_filter(data, window_size=256):
window = np.ones(window_size) / window_size
return np.convolve(data, window, mode='same')
# Stolen from selcald
def note(freq, length, amp=1.0, rate=44100):
if freq == 0:
data = np.zeros(int(length * rate))
else:
t = np.linspace(0, length, int(length * rate))
data = np.sin(2 * np.pi * freq * t) * amp
return data
# These originally came from https://scipy.github.io/old-wiki/pages/Cookbook/ButterworthBandpass,
# but they've been copied around the internet so many times that ChatGPT now produces them verbatim.

View File

@ -5,85 +5,31 @@ import sys
import numpy as np
from scipy import signal
from scipy.io import wavfile
from scipy.signal import butter, lfilter
tones = {}
with open('tones.csv', newline='') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
tones[row['designator']] = float(row['frequency'])
'''
def freq_of_key(midi_key):
return 440.0 * (2 ** ((midi_key - 69)/12))
tones = {}
for c in range(65, 90):
tones[c] = freq_of_key(c)
'''
# Shamelessly lifted from
# https://scipy.github.io/old-wiki/pages/Cookbook/ButterworthBandpass
def butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, a
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
# tone synthesis
def note(freq, cycles, amp=32767.0, rate=44100):
len = cycles * (1.0/rate)
t = np.linspace(0, len, int(len * rate))
if freq == 0:
data = np.zeros(int(len * rate))
else:
data = np.sin(2 * np.pi * freq * t) * amp
return data.astype(int)
def decimate_from_sample_rate(sample_rate):
if sample_rate == 44100:
return 4 # rate = 11025, Fmax = 5512.5 Hz
elif sample_rate == 48000:
return 5 # rate = 9600, Fmax = 4800 Hz
elif sample_rate == 22050:
return 2 # rate = 11025, Fmax = 5512.5 Hz
elif sample_rate == 11025:
return 1 # rate = 11025, Fmax = 5512.5 Hz
else:
raise ValueError("Sample rate not supported")
from tones import TONES
from filters import bandpass_filter, note, smoothing_filter, anti_alias
pure_sample_length = 0.1
if __name__ == '__main__':
# TODO JMT: What is this?
FLT_LEN = 2000
file_name = sys.argv[1]
sample_rate, data = wavfile.read(file_name)
print(f"{file_name}: {len(data)} samples @ {sample_rate} Hz")
decimate = decimate_from_sample_rate(sample_rate)
if decimate > 1:
data = signal.decimate(data, decimate)
sample_rate = sample_rate / decimate
if len(data.shape) == 2:
data = data.mean(axis=1)
print(f'Length after decimation: {len(data)} samples')
# Normalise
print(np.max(data))
data = data / np.max(data)
data = butter_bandpass_filter(data, 270, 1700, sample_rate, order=8)
# TODO JMT: Find out why the correlation step fails when max frequency <= 2 * nyquist rate
data, sample_rate, decimation = anti_alias(data, sample_rate, 4800)
print(f'Length after decimation: {len(data)} samples (/{decimation}, {sample_rate})')
pure_signals = {tone:note(freq, FLT_LEN, rate=sample_rate) for tone,freq in tones.items()}
pure_signals = {tone:note(freq, pure_sample_length, rate=sample_rate) for tone,freq in TONES.items()}
correlations = {tone:np.abs(signal.correlate(data, pure, mode='same')) for tone,pure in pure_signals.items()}
massaged = {tone:smoothing_filter(correlation) for tone,correlation in correlations.items()}
N = FLT_LEN // 8 # Rolling average length
cumsum_convolution = np.ones(N)/N
massaged = {tone:np.convolve(correlation, cumsum_convolution, mode='valid') for tone,correlation in correlations.items()}
# Only import if we're actually plotting, these imports are pretty heavy.
import pyqtgraph as pg
@ -100,7 +46,7 @@ if __name__ == '__main__':
legend.setParentItem(legend_view)
color_map = pg.colormap.get('CET-C6s')
colors = color_map.getLookupTable(nPts=len(tones))
colors = color_map.getLookupTable(nPts=len(TONES))
for (tone, correlation), color in zip(massaged.items(), colors):
line = plot.plot(correlation, pen=pg.mkPen(color=color), fillLevel=0.1, name=tone)