selcal/scripts/selcal-fft.py

107 lines
3.2 KiB
Python
Executable File

#! /usr/bin/env python3
import numpy as np
from scipy.io import wavfile
from scipy.fft import fft
from filters import anti_alias
from tones import TONES
from utilities import *
import matplotlib.pyplot as plt
import sys
file_name = sys.argv[1]
sample_rate, data = wavfile.read(file_name)
# Handle stereo audio by converting to mono if needed
if len(data.shape) == 2:
data = data.mean(axis=1)
max_freq = 1600.0
data, sample_rate = anti_alias(data, sample_rate, max_freq)
fft_size = 1024 # Must be larger than max_freq TODO JMT: fix this, zero-pad
frequency_resolution = sample_rate / fft_size
max_bin = int(max_freq / frequency_resolution)
segment_interval = 0.2 # seconds
samples_per_interval = int(sample_rate * segment_interval)
num_segments = len(data) // samples_per_interval
fft_results = np.zeros((num_segments, max_bin))
for i in range(num_segments):
# Segment window is current position to fft_size samples in the past. As such some segments
# will have overlap in which samples are used when fft_size > samples_per_interval
end = (i + 1) * samples_per_interval
start = end - fft_size
try:
segment = data[start:end]
fft_result = fft(segment)
magnitudes = np.abs(fft_result)
total_energy = np.sum(magnitudes ** 2)
normalized_magnitudes = magnitudes / np.sqrt(total_energy)
# Store the normalised magnitude spectrum only for the desired frequency range
fft_results[i, :] = normalized_magnitudes[:max_bin]
tone_width = 6.25 # Hz
def band(centre_frequency, width=tone_width):
return (centre_frequency - width, centre_frequency + width)
def bins(band):
return (int(band[0]/frequency_resolution), int(band[1]/frequency_resolution))
def magnitude_in_band(band):
low_bin, high_bin = bins(band)
return np.sum(normalized_magnitudes[low_bin:high_bin])
scores = {
tone:decibels(magnitude_in_band(band(frequency)))
for tone,frequency in TONES.items()
}
active_tones = find_top_two_keys(scores, 3.0)
if active_tones:
print(active_tones)
except Exception as e:
print(e)
# Only import if we're actually plotting, these imports are pretty heavy.
import pyqtgraph as pg
from pyqtgraph.Qt import QtWidgets, QtCore
app = pg.mkQApp("ImageView Example")
window = QtWidgets.QMainWindow()
window.resize(1280, 720)
window.setWindowTitle(f"SELCAL FFT Analysis: {file_name}")
layout = pg.GraphicsLayoutWidget(show=True)
window.setCentralWidget(layout)
plot = layout.addPlot()
fft_view = pg.ImageItem()
fft_view.setImage(fft_results)
fft_view.setRect(QtCore.QRectF(0, 0, len(data) // sample_rate, max_freq))
plot.addItem(fft_view)
colormap = pg.colormap.get("inferno")
colorbar = pg.ColorBarItem( values=(0,1), colorMap=colormap)
colorbar.setImageItem(fft_view, insert_in=plot)
tone_pen = pg.mkPen(color=(20, 20, 20), width=1, style=QtCore.Qt.DashLine)
for frequency in TONES.values():
tone_line = pg.InfiniteLine(pos=frequency, angle=0, pen=tone_pen)
plot.addItem(tone_line)
yticks = [(frequency, tone) for tone,frequency in TONES.items()]
plot.getAxis('left').setTicks([yticks])
window.show()
pg.exec()