selcal/scripts/selcal-fft.py

178 lines
5.8 KiB
Python
Executable File

#! /usr/bin/env python3
import numpy as np
from scipy.io import wavfile
from scipy.fft import fft
from scipy.signal import butter, lfilter, decimate
import matplotlib.pyplot as plt
import sys
file_name = sys.argv[1]
frequencies = np.array([10 ** ((n + 22) * 0.0225 + 2) for n in range(32)])
widths = np.array([6.25 * 10 ** (n * 0.0225) for n in range(32)])
widths = np.array([6.25 for n in range(32)])
def butter_bandpass(lowcut, highcut, fs, order=5):
nyquist = 0.5 * fs
low = lowcut / nyquist
high = highcut / nyquist
b, a = butter(order, [low, high], btype='band')
return b, a
def bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
def butter_lowpass(cutoff, fs, order=5):
nyquist = 0.5 * fs
normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y
def get_largest_two_indices(numbers, threshold):
# Check if the list has at least three numbers
if len(numbers) < 3:
return None
# Find the indices of the three largest numbers in the list
indices = sorted(range(len(numbers)), key=lambda i: numbers[i], reverse=True)
largest_index = indices[0]
second_largest_index = indices[1]
third_largest_index = indices[2]
# Check if the largest and second largest numbers are at least threshold larger than the third largest
if numbers[largest_index] - numbers[third_largest_index] >= threshold and \
numbers[second_largest_index] - numbers[third_largest_index] >= threshold:
return largest_index, second_largest_index
else:
return None
# Step 1: Read the WAV file
sample_rate, data = wavfile.read(file_name)
# Handle stereo audio by converting to mono if needed
if len(data.shape) == 2:
data = data.mean(axis=1)
# Define the maximum frequency of interest and Nyquist rate
max_freq = 1600.0 # 2000 Hz
nyquist_rate = 2 * max_freq # Nyquist rate to prevent aliasing
# If the sample rate is higher than the Nyquist rate, downsample
if sample_rate > nyquist_rate:
# Apply a lowpass filter before downsampling
cutoff = max_freq #+ 500 # Lowpass filter cutoff slightly above max_freq to prevent aliasing
filtered_data = lowpass_filter(data, cutoff, sample_rate)
# Calculate the downsampling factor
downsample_factor = int(sample_rate / nyquist_rate)
# Downsample the filtered signal
filtered_data = decimate(filtered_data, downsample_factor)
sample_rate = sample_rate // downsample_factor
else:
filtered_data = data
# Step 2: Define the increment (0.1 seconds) and segment size
#increment = 0.2 # in seconds
#segment_size = int(sample_rate * increment)
segment_size = 1024
increment = segment_size / sample_rate
print(f"Segment size: {segment_size}")
# Step 3: Process each segment
num_segments = len(filtered_data) // segment_size
# Calculate the frequency resolution
delta_f = sample_rate / segment_size
# Determine the bin range for desired frequency range (100 Hz to 2000 Hz)
high_bin = int(max_freq / delta_f)
seg_off = int(sample_rate * 0.1)
act_segs = len(filtered_data) // seg_off
# Initialize a 2D array to store DFT results (magnitude spectrum)
# Only store the bins within the desired frequency range
dft_results = np.zeros((act_segs, high_bin))
for i in range(act_segs):
end = (i+1) * seg_off
start = end - segment_size
try:
segment = filtered_data[start:end]
# Step 4: Apply the DFT
dft_result = fft(segment)
magnitudes = np.abs(dft_result)
total_energy = np.sum(magnitudes ** 2)
normalized_magnitudes = magnitudes / np.sqrt(total_energy)
normalized_magnitude = np.mean(normalized_magnitudes)
# Store the magnitude spectrum in the 2D array, only for the desired frequency range
dft_results[i, :] = normalized_magnitudes[:high_bin]
scores = [
10 * np.log10(np.sum(normalized_magnitudes[int((f-w)/delta_f):int((f+w)/delta_f)]))
for f,w in zip(frequencies, widths)
]
codes = get_largest_two_indices(scores, 3.0)
if codes:
print([frequencies[code] for code in sorted(codes)])
except:
pass
# Only import if we're actually plotting, these imports are pretty heavy.
import pyqtgraph as pg
from pyqtgraph.Qt import QtGui, QtWidgets, QtCore, mkQApp
app = pg.mkQApp("ImageView Example")
## Create window with ImageView widget
win = QtWidgets.QMainWindow()
win.resize(1280, 720)
imv = pg.GraphicsLayoutWidget(show=True)
win.setCentralWidget(imv)
correlogram = pg.ImageItem()
correlogram.setImage(dft_results)
img_rect = QtCore.QRectF(0, 0, len(filtered_data) // sample_rate, max_freq)
correlogram.setRect(img_rect)
plotItem = imv.addPlot() # add PlotItem to the main GraphicsLayoutWidget
#plotItem.setDefaultPadding(0.0) # plot without padding data range
plotItem.addItem(correlogram) # display correlogram
#plotItem.showAxes(True, showValues=(True, True, False, False), size=20)
freq_pen = pg.mkPen(color=(20, 20, 20), width=1, style=QtCore.Qt.DashLine)
for freq in frequencies:
horizontal_line = pg.InfiniteLine(pos=freq, angle=0, pen=freq_pen)
plotItem.addItem(horizontal_line)
yticks = [(i, str(round(i))) for i in frequencies]
plotItem.getAxis('left').setTicks([yticks])
colorMap = pg.colormap.get("CMRmap", source='matplotlib') # choose perceptually uniform, diverging color map
# generate an adjustabled color bar, initially spanning -1 to 1:
bar = pg.ColorBarItem( values=(0,1), colorMap=colorMap)
# link color bar and color map to correlogram, and show it in plotItem:
bar.setImageItem(correlogram, insert_in=plotItem)
win.show()
win.setWindowTitle('pyqtgraph example: ImageView')
pg.exec()