selcal/scripts/selcald/receiver.py

191 lines
5.1 KiB
Python

# Run with "ipython --matplotlib=qt receiver.py <file>.wav"
#
from __future__ import print_function
import sys
import numpy as np
from scipy import signal
from scipy.io.wavfile import read
from scipy.signal import butter, lfilter
from math import log10
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
FRAME_TIME = 0.1 # Frame time in seconds
TONES = [312.6,
346.7,
384.6,
426.6,
473.2,
524.8,
582.1,
645.7,
716.1,
794.3,
881.0,
977.2,
1083.9,
1202.3,
1333.5,
1479.1]
ALPHABET = ['Alpha',
'Bravo',
'Charlie',
'Delta',
'Echo',
'Foxtrot',
'Golf',
'Hotel',
'Juliette',
'Kilo',
'Lima',
'Mike',
'Papa',
'Quebec',
'Romeo',
'Sierra']
FILTER_LEN = 1000 # Samples
# Shamelessly lifted from
# https://scipy.github.io/old-wiki/pages/Cookbook/ButterworthBandpass
def butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, a
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
# tone synthesis
def note(freq, cycles, amp=32767.0, rate=44100):
len = cycles * (1.0/rate)
t = np.linspace(0, len, len * rate)
if freq is 0:
data = np.zeros(int(len * rate))
else:
data = np.sin(2 * np.pi * freq * t) * amp
return data.astype(int)
# analyze wav file by chunks
def receiver(file_name):
try:
sig_rate, sig_noise = read(file_name)
except Exception:
print('Error opening {}'.format(file_name))
return
print('file: ', file_name, ' rate: ', sig_rate, ' len: ', len(sig_noise))
if sig_rate == 44100:
decimate = 4 # rate = 11025, Fmax = 5512.5 Hz
elif sig_rate == 48000:
decimate = 5 # rate = 9600, Fmax = 4800 Hz
elif sig_rate == 22050:
decimate = 2 # rate = 11025, Fmax = 5512.5 Hz
elif sig_rate == 11025:
decimate = 1 # rate = 11025, Fmax = 5512.5 Hz
else:
print('Sample rate {} not supported.'.format(sig_rate))
return
if decimate > 1:
sig_noise = signal.decimate(sig_noise, decimate)
sig_rate = sig_rate / decimate
print('length after decimation: ', len(sig_noise))
frame_len = int(sig_rate * FRAME_TIME)
frames = int((len(sig_noise) / frame_len) + 1)
sig_noise = butter_bandpass_filter(sig_noise,
270,
1700,
sig_rate,
order=8)
template = []
for tone in range(0, len(TONES)):
template.append(note(TONES[tone], frame_len, rate=sig_rate))
# See http://stackoverflow.com/questions/23507217/
# python-plotting-2d-data-on-to-3d-axes
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
y = np.arange(len(TONES))
print(' Index A B C D E F G', end='')
print(' H J K L M P Q R', end='')
print(' S Avg')
x = range(0, frames)
X, Y = np.meshgrid(y, x)
Z = np.zeros((len(x), len(y)))
for frame in range(0, frames):
beg = frame * frame_len
end = (frame+1) * frame_len
corr = np.zeros(len(TONES))
for tone in range(0, len(TONES)):
corr[tone] = log10(np.abs(signal.correlate(sig_noise[beg:end],
template[tone],
mode='same')).sum())
Z[frame, tone] = corr[tone]
max1 = 0.0
for tone in range(0, len(TONES)):
if corr[tone] > max1:
max1 = corr[tone]
max1idx = tone
max2 = 0.0
for tone in range(0, len(TONES)):
if tone != max1idx and corr[tone] > max2:
max2 = corr[tone]
max2idx = tone
print('{0:6d}: '.format(frame), end='')
avg = np.mean(corr)
for tone in range(0, len(TONES)):
if tone == max1idx or tone == max2idx:
print('[{0:2.2f}]'.format(corr[tone]), end='')
else:
if corr[tone] > avg:
print(' {0:2.2f} '.format(corr[tone]), end='')
else:
print(' . ', end='')
print(' {0:2.2f}'.format(avg))
ax.plot_surface(X, Y, Z, rstride=1, cstride=1000, color='w', shade=True,
lw=.5)
# ax.plot_wireframe(X, Y, Z, rstride=1, cstride=1000, lw=.5)
ax.set_title(file_name)
ax.set_xlabel("Tone")
ax.set_ylabel("Frame")
ax.set_zlabel("Log Correlation")
ax.set_zlim(10.0, 15.0)
ax.set_ylim(0, frames)
ax.view_init(30, -130)
plt.show()
if __name__ == "__main__":
receiver(sys.argv[1])