#! /usr/bin/env python3 import numpy as np from scipy.io import wavfile from scipy.fft import fft from filters import anti_alias from tones import TONES import matplotlib.pyplot as plt import sys file_name = sys.argv[1] def decibels(f): return 10 * np.log10(f) def find_top_two_keys(d, threshold): sorted_items = sorted(d.items(), key=lambda item: item[1], reverse=True) if len(sorted_items) < 3: return None top_two = sorted_items[:2] third_value = sorted_items[2][1] if top_two[0][1] - third_value < threshold or top_two[1][1] - third_value < threshold: return None return top_two[0][0], top_two[1][0] # Step 1: Read the WAV file sample_rate, data = wavfile.read(file_name) # Handle stereo audio by converting to mono if needed if len(data.shape) == 2: data = data.mean(axis=1) max_freq = 1600.0 data, sample_rate = anti_alias(data, sample_rate, max_freq) fft_size = 1024 # Must be larger than max_freq TODO JMT: fix this, zero-pad frequency_resolution = sample_rate / fft_size max_bin = int(max_freq / frequency_resolution) segment_interval = 0.2 # seconds samples_per_interval = int(sample_rate * segment_interval) num_segments = len(data) // samples_per_interval fft_results = np.zeros((num_segments, max_bin)) for i in range(num_segments): # Segment window is current position to fft_size samples in the past. As such some segments # will have overlap in which samples are used when fft_size > samples_per_interval end = (i + 1) * samples_per_interval start = end - fft_size try: segment = data[start:end] fft_result = fft(segment) magnitudes = np.abs(fft_result) total_energy = np.sum(magnitudes ** 2) normalized_magnitudes = magnitudes / np.sqrt(total_energy) # Store the normalised magnitude spectrum only for the desired frequency range fft_results[i, :] = normalized_magnitudes[:max_bin] tone_width = 6.25 # Hz def band(centre_frequency, width=tone_width): return (centre_frequency - width, centre_frequency + width) def bins(band): return (int(band[0]/frequency_resolution), int(band[1]/frequency_resolution)) def magnitude_in_band(band): low_bin, high_bin = bins(band) return np.sum(normalized_magnitudes[low_bin:high_bin]) scores = { tone:decibels(magnitude_in_band(band(frequency))) for tone,frequency in TONES.items() } active_tones = find_top_two_keys(scores, 3.0) if active_tones: print(active_tones) except Exception as e: print(e) # Only import if we're actually plotting, these imports are pretty heavy. import pyqtgraph as pg from pyqtgraph.Qt import QtGui, QtWidgets, QtCore, mkQApp app = pg.mkQApp("ImageView Example") window = QtWidgets.QMainWindow() window.resize(1280, 720) window.setWindowTitle(f"SELCAL FFT Analysis: {file_name}") layout = pg.GraphicsLayoutWidget(show=True) window.setCentralWidget(layout) plot = layout.addPlot() fft_view = pg.ImageItem() fft_view.setImage(fft_results) fft_view.setRect(QtCore.QRectF(0, 0, len(data) // sample_rate, max_freq)) plot.addItem(fft_view) # Note JMT: Requires matplotlib installed to use this colormap colormap = pg.colormap.get("CMRmap", source='matplotlib') colorbar = pg.ColorBarItem( values=(0,1), colorMap=colormap) colorbar.setImageItem(fft_view, insert_in=plot) tone_pen = pg.mkPen(color=(20, 20, 20), width=1, style=QtCore.Qt.DashLine) for frequency in TONES.values(): tone_line = pg.InfiniteLine(pos=frequency, angle=0, pen=tone_pen) plot.addItem(tone_line) yticks = [(frequency, tone) for tone,frequency in TONES.items()] plot.getAxis('left').setTicks([yticks]) window.show() pg.exec()