#! /usr/bin/env python3 import numpy as np from scipy.io import wavfile from scipy.fft import fft from scipy.signal import butter, lfilter, decimate import matplotlib.pyplot as plt import sys frequencies = np.array([10 ** ((n + 22) * 0.0225 + 2) for n in range(32)]) widths = np.array([6.25 * 10 ** (n * 0.0225) for n in range(32)]) widths = np.array([6.25 for n in range(32)]) def butter_bandpass(lowcut, highcut, fs, order=5): nyquist = 0.5 * fs low = lowcut / nyquist high = highcut / nyquist b, a = butter(order, [low, high], btype='band') return b, a def bandpass_filter(data, lowcut, highcut, fs, order=5): b, a = butter_bandpass(lowcut, highcut, fs, order=order) y = lfilter(b, a, data) return y def butter_lowpass(cutoff, fs, order=5): nyquist = 0.5 * fs normal_cutoff = cutoff / nyquist b, a = butter(order, normal_cutoff, btype='low', analog=False) return b, a def lowpass_filter(data, cutoff, fs, order=5): b, a = butter_lowpass(cutoff, fs, order=order) y = lfilter(b, a, data) return y def get_largest_two_indices(numbers, threshold): # Check if the list has at least three numbers if len(numbers) < 3: return None # Find the indices of the three largest numbers in the list indices = sorted(range(len(numbers)), key=lambda i: numbers[i], reverse=True) largest_index = indices[0] second_largest_index = indices[1] third_largest_index = indices[2] # Check if the largest and second largest numbers are at least threshold larger than the third largest if numbers[largest_index] - numbers[third_largest_index] >= threshold and \ numbers[second_largest_index] - numbers[third_largest_index] >= threshold: return largest_index, second_largest_index else: return None # Step 1: Read the WAV file sample_rate, data = wavfile.read(sys.argv[1]) # Handle stereo audio by converting to mono if needed if len(data.shape) == 2: data = data.mean(axis=1) # Define the maximum frequency of interest and Nyquist rate max_freq = 1600.0 # 2000 Hz nyquist_rate = 2 * max_freq # Nyquist rate to prevent aliasing # If the sample rate is higher than the Nyquist rate, downsample if sample_rate > nyquist_rate: # Apply a lowpass filter before downsampling cutoff = max_freq #+ 500 # Lowpass filter cutoff slightly above max_freq to prevent aliasing filtered_data = lowpass_filter(data, cutoff, sample_rate) # Calculate the downsampling factor downsample_factor = int(sample_rate / nyquist_rate) # Downsample the filtered signal filtered_data = decimate(filtered_data, downsample_factor) sample_rate = sample_rate // downsample_factor else: filtered_data = data # Step 2: Define the increment (0.1 seconds) and segment size #increment = 0.2 # in seconds #segment_size = int(sample_rate * increment) segment_size = 1024 increment = segment_size / sample_rate print(f"Segment size: {segment_size}") # Step 3: Process each segment num_segments = len(filtered_data) // segment_size # Calculate the frequency resolution delta_f = sample_rate / segment_size # Determine the bin range for desired frequency range (100 Hz to 2000 Hz) high_bin = int(max_freq / delta_f) # Initialize a 2D array to store DFT results (magnitude spectrum) # Only store the bins within the desired frequency range dft_results = np.zeros((num_segments, high_bin)) for i in range(num_segments): start = i * segment_size end = start + segment_size segment = filtered_data[start:end] # Step 4: Apply the DFT dft_result = fft(segment) magnitudes = np.abs(dft_result) total_energy = np.sum(magnitudes ** 2) normalized_magnitudes = magnitudes / np.sqrt(total_energy) normalized_magnitude = np.mean(normalized_magnitudes) # Store the magnitude spectrum in the 2D array, only for the desired frequency range dft_results[i, :] = normalized_magnitudes[:high_bin] scores = [ 10 * np.log10(np.sum(normalized_magnitudes[int((f-w)/delta_f):int((f+w)/delta_f)])) for f,w in zip(frequencies, widths) ] codes = get_largest_two_indices(scores, 3.0) if codes: print([frequencies[code] for code in codes]) # Step 5: Plot the spectrogram plt.figure(figsize=(12, 8)) extent = [0, num_segments * increment, 0, max_freq] plt.imshow(dft_results.T, aspect='auto', origin='lower', extent=extent, cmap='viridis') plt.colorbar(label='Magnitude') plt.title('Spectrogram (100 Hz to 2000 Hz)') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') for freq in frequencies: plt.axhline(y=freq, color='r', linestyle='--', linewidth=0.5) plt.show()