# Run with "ipython -i --matplotlib=qt correlate.py" # from __future__ import print_function import numpy as np # import pandas as pd from scipy import signal import matplotlib.pyplot as plt RATE = 44100 # tone synthesis def tone(freq, cycles, amp=1, rate=RATE): len = cycles * (1.0/freq) t = np.linspace(0, len, len * rate) if freq is 0: data = np.zeros(int(len * rate)) else: data = np.sin(2 * np.pi * freq * t) * amp return data freqs = range(600, 722, 2) # Frequency range fig, ax = plt.subplots(1, 1, sharex=True) for length in [32, 64, 100, 128, 256]: print("len = ", length) sig = tone(660.0, length) # Reference tone response = [] for freq in freqs: sig_tx = tone(freq * 1.0, length) # Test tone resp = np.abs(signal.correlate(sig, sig_tx, mode='same')) response.append(resp.sum()) ax.semilogy(freqs, response, label='len = {}'.format(length)) ax.set_title('Matched filter response') ax.axvline(626.67, ls=':') # Guardband markers ax.axvline(695.01, ls=':') ax.legend(loc='best') ax.margins(0, 0.1) fig.set_tight_layout(True) fig.show()