Compare commits

..

No commits in common. "e4b0645ac6ecb19bb91dfce9f77873a752d67dff" and "8aecf684f90ab3877e2bf3e4bf3ae57d385695d2" have entirely different histories.

4 changed files with 108 additions and 156 deletions

3
scripts/.gitignore vendored
View File

@ -1,2 +1 @@
*.wav *.wav
__pycache__/

View File

@ -1,42 +0,0 @@
from scipy.signal import butter, lfilter, decimate
def anti_alias(data, sample_rate, max_frequency):
nyquist_rate = 2 * max_frequency
if sample_rate > nyquist_rate:
filtered_data = lowpass_filter(data, max_frequency, sample_rate)
downsample_factor = int(sample_rate / nyquist_rate)
filtered_data = decimate(filtered_data, downsample_factor)
sample_rate = sample_rate // downsample_factor
else:
filtered_data = data
return filtered_data, sample_rate
# These originally came from https://scipy.github.io/old-wiki/pages/Cookbook/ButterworthBandpass,
# but they've been copied around the internet so many times that ChatGPT now produces them verbatim.
def butter_bandpass(lowcut, highcut, fs, order=5):
nyquist = 0.5 * fs
low = lowcut / nyquist
high = highcut / nyquist
b, a = butter(order, [low, high], btype='band')
return b, a
def bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
def butter_lowpass(cutoff, fs, order=5):
nyquist = 0.5 * fs
normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y

View File

@ -1,125 +1,147 @@
#! /usr/bin/env python3 #! /usr/bin/env python3
import numpy as np import numpy as np
from scipy.io import wavfile from scipy.io import wavfile
from scipy.fft import fft from scipy.fft import fft
from filters import anti_alias from scipy.signal import butter, lfilter, decimate
from tones import TONES
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import sys import sys
file_name = sys.argv[1] frequencies = np.array([10 ** ((n + 22) * 0.0225 + 2) for n in range(32)])
widths = np.array([6.25 * 10 ** (n * 0.0225) for n in range(32)])
widths = np.array([6.25 for n in range(32)])
def butter_bandpass(lowcut, highcut, fs, order=5):
nyquist = 0.5 * fs
low = lowcut / nyquist
high = highcut / nyquist
b, a = butter(order, [low, high], btype='band')
return b, a
def decibels(f): def bandpass_filter(data, lowcut, highcut, fs, order=5):
return 10 * np.log10(f) b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
def find_top_two_keys(d, threshold): def butter_lowpass(cutoff, fs, order=5):
sorted_items = sorted(d.items(), key=lambda item: item[1], reverse=True) nyquist = 0.5 * fs
normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a
if len(sorted_items) < 3: def lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y
def get_largest_two_indices(numbers, threshold):
# Check if the list has at least three numbers
if len(numbers) < 3:
return None return None
top_two = sorted_items[:2] # Find the indices of the three largest numbers in the list
third_value = sorted_items[2][1] indices = sorted(range(len(numbers)), key=lambda i: numbers[i], reverse=True)
if top_two[0][1] - third_value < threshold or top_two[1][1] - third_value < threshold: largest_index = indices[0]
return None second_largest_index = indices[1]
third_largest_index = indices[2]
return top_two[0][0], top_two[1][0] # Check if the largest and second largest numbers are at least threshold larger than the third largest
if numbers[largest_index] - numbers[third_largest_index] >= threshold and \
numbers[second_largest_index] - numbers[third_largest_index] >= threshold:
return largest_index, second_largest_index
else:
return None
# Step 1: Read the WAV file # Step 1: Read the WAV file
sample_rate, data = wavfile.read(file_name) sample_rate, data = wavfile.read(sys.argv[1])
# Handle stereo audio by converting to mono if needed # Handle stereo audio by converting to mono if needed
if len(data.shape) == 2: if len(data.shape) == 2:
data = data.mean(axis=1) data = data.mean(axis=1)
max_freq = 1600.0 # Define the maximum frequency of interest and Nyquist rate
data, sample_rate = anti_alias(data, sample_rate, max_freq) max_freq = 1600.0 # 2000 Hz
nyquist_rate = 2 * max_freq # Nyquist rate to prevent aliasing
fft_size = 1024 # Must be larger than max_freq TODO JMT: fix this, zero-pad # If the sample rate is higher than the Nyquist rate, downsample
frequency_resolution = sample_rate / fft_size if sample_rate > nyquist_rate:
max_bin = int(max_freq / frequency_resolution) # Apply a lowpass filter before downsampling
cutoff = max_freq #+ 500 # Lowpass filter cutoff slightly above max_freq to prevent aliasing
filtered_data = lowpass_filter(data, cutoff, sample_rate)
segment_interval = 0.2 # seconds # Calculate the downsampling factor
samples_per_interval = int(sample_rate * segment_interval) downsample_factor = int(sample_rate / nyquist_rate)
num_segments = len(data) // samples_per_interval
# Downsample the filtered signal
filtered_data = decimate(filtered_data, downsample_factor)
sample_rate = sample_rate // downsample_factor
else:
filtered_data = data
fft_results = np.zeros((num_segments, max_bin)) # Step 2: Define the increment (0.1 seconds) and segment size
#increment = 0.2 # in seconds
#segment_size = int(sample_rate * increment)
segment_size = 1024
increment = segment_size / sample_rate
print(f"Segment size: {segment_size}")
for i in range(num_segments): # Step 3: Process each segment
# Segment window is current position to fft_size samples in the past. As such some segments num_segments = len(filtered_data) // segment_size
# will have overlap in which samples are used when fft_size > samples_per_interval
end = (i + 1) * samples_per_interval # Calculate the frequency resolution
start = end - fft_size delta_f = sample_rate / segment_size
# Determine the bin range for desired frequency range (100 Hz to 2000 Hz)
high_bin = int(max_freq / delta_f)
seg_off = int(sample_rate * 0.1)
act_segs = len(filtered_data) // seg_off
# Initialize a 2D array to store DFT results (magnitude spectrum)
# Only store the bins within the desired frequency range
dft_results = np.zeros((act_segs, high_bin))
for i in range(act_segs):
end = (i+1) * seg_off
start = end - segment_size
try: try:
segment = data[start:end] segment = filtered_data[start:end]
fft_result = fft(segment) # Step 4: Apply the DFT
dft_result = fft(segment)
magnitudes = np.abs(fft_result) magnitudes = np.abs(dft_result)
total_energy = np.sum(magnitudes ** 2) total_energy = np.sum(magnitudes ** 2)
normalized_magnitudes = magnitudes / np.sqrt(total_energy) normalized_magnitudes = magnitudes / np.sqrt(total_energy)
normalized_magnitude = np.mean(normalized_magnitudes)
# Store the normalised magnitude spectrum only for the desired frequency range # Store the magnitude spectrum in the 2D array, only for the desired frequency range
fft_results[i, :] = normalized_magnitudes[:max_bin] dft_results[i, :] = normalized_magnitudes[:high_bin]
tone_width = 6.25 # Hz scores = [
def band(centre_frequency, width=tone_width): 10 * np.log10(np.sum(normalized_magnitudes[int((f-w)/delta_f):int((f+w)/delta_f)]))
return (centre_frequency - width, centre_frequency + width) for f,w in zip(frequencies, widths)
]
def bins(band): codes = get_largest_two_indices(scores, 3.0)
return (int(band[0]/frequency_resolution), int(band[1]/frequency_resolution)) if codes:
print([frequencies[code] for code in sorted(codes)])
def magnitude_in_band(band): except:
low_bin, high_bin = bins(band) pass
return np.sum(normalized_magnitudes[low_bin:high_bin])
scores = {
tone:decibels(magnitude_in_band(band(frequency)))
for tone,frequency in TONES.items()
}
active_tones = find_top_two_keys(scores, 3.0)
if active_tones:
print(active_tones)
except Exception as e:
print(e)
# Only import if we're actually plotting, these imports are pretty heavy. # Step 5: Plot the spectrogram
import pyqtgraph as pg plt.figure(figsize=(12, 8))
from pyqtgraph.Qt import QtGui, QtWidgets, QtCore, mkQApp extent = [0, num_segments * increment, 0, max_freq]
plt.imshow(dft_results.T, aspect='auto', origin='lower', extent=extent, cmap='viridis')
plt.colorbar(label='Magnitude')
plt.title('Spectrogram (100 Hz to 2000 Hz)')
plt.xlabel('Time (s)')
plt.ylabel('Frequency (Hz)')
app = pg.mkQApp("ImageView Example")
window = QtWidgets.QMainWindow()
window.resize(1280, 720)
window.setWindowTitle(f"SELCAL FFT Analysis: {file_name}")
layout = pg.GraphicsLayoutWidget(show=True) for freq in frequencies:
window.setCentralWidget(layout) plt.axhline(y=freq, color='r', linestyle='--', linewidth=0.5)
plot = layout.addPlot() plt.show()
fft_view = pg.ImageItem()
fft_view.setImage(fft_results)
fft_view.setRect(QtCore.QRectF(0, 0, len(data) // sample_rate, max_freq))
plot.addItem(fft_view)
# Note JMT: Requires matplotlib installed to use this colormap
colormap = pg.colormap.get("CMRmap", source='matplotlib')
colorbar = pg.ColorBarItem( values=(0,1), colorMap=colormap)
colorbar.setImageItem(fft_view, insert_in=plot)
tone_pen = pg.mkPen(color=(20, 20, 20), width=1, style=QtCore.Qt.DashLine)
for frequency in TONES.values():
tone_line = pg.InfiniteLine(pos=frequency, angle=0, pen=tone_pen)
plot.addItem(tone_line)
yticks = [(frequency, tone) for tone,frequency in TONES.items()]
plot.getAxis('left').setTicks([yticks])
window.show()
pg.exec()

View File

@ -1,27 +0,0 @@
#! /usr/bin/env python3
'''
def frequency_16(n):
return 100 * 10 ** ((n + 22) * 0.0225)
'''
def frequency_32(n):
return 100 * 10 ** ((n + 22) * 0.0225)
def width_16(n):
return 12.5 * 10 ** (n * 0.045)
def width_32(n):
return 6.25 * 10 ** (n * 0.0225)
SELCAL_16 = 'ABCDEFGHJKLMPQRS'
SELCAL_EXTRA = 'TUVWXYZ123456789'
SELCAL_32 = [item for pair in zip(SELCAL_16, SELCAL_EXTRA) for item in pair]
TONES = {SELCAL_32[n]:frequency_32(n) for n in range(32)}
if __name__ == "__main__":
# Print SELCAL 32 tones in csv format, ascending frequency order
print('\n'.join([f"{k},{v}" for k,v in TONES.items()]))