200 lines
6.0 KiB
Python
Executable File
200 lines
6.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# FM demodulator based on I/Q (quadrature) samples
|
|
#
|
|
# This code is modified from the original demodulator by:
|
|
# https://github.com/elvis-epx/sdr
|
|
# No licence information is provided.
|
|
#
|
|
|
|
import struct
|
|
import math
|
|
import random
|
|
import sys
|
|
import numpy as np
|
|
import filters
|
|
import argparse
|
|
import prefixed
|
|
from formats import TYPES
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-v', '--verbose', help='Print additional informational output', action='store_true')
|
|
parser.add_argument('-f', '--format', choices=list(TYPES.keys()), help='Input sample format', required=True)
|
|
parser.add_argument('-s', '--sample-rate', metavar='rate', help='Source sample rate (Hz)', required=True)
|
|
parser.add_argument('-d', '--demod-rate', metavar='rate', help='Output sample rate (Hz)', required=True)
|
|
# TODO JMT: Output to file
|
|
#parser.add_argument('-o', metavar='file', help='Specify an output file for demodulated audio. Omit for stdout or use \'-\'.')
|
|
args = parser.parse_args()
|
|
|
|
INPUT_RATE = int(prefixed.Float(args.sample_rate))
|
|
OUTPUT_RATE = int(prefixed.Float(args.demod_rate))
|
|
DECIMATION = INPUT_RATE / OUTPUT_RATE
|
|
|
|
if DECIMATION != math.floor(DECIMATION):
|
|
print(f'The output rate must be an integer divisor of the input rate: {INPUT_RATE}/{OUTPUT_RATE} = {DECIMATION}', file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
FORMAT = TYPES[args.format]
|
|
DT = np.dtype(FORMAT)
|
|
BYTES_PER_SAMPLE = 2 * DT.itemsize
|
|
|
|
MAX_DEVIATION = 200000.0 # Hz
|
|
FM_BANDWIDTH = 15000 # Hz
|
|
STEREO_CARRIER = 38000 # Hz
|
|
DEVIATION_X_SIGNAL = 0.999 / (math.pi * MAX_DEVIATION / (INPUT_RATE / 2))
|
|
|
|
pll = math.pi - random.random() * 2 * math.pi
|
|
last_pilot = 0.0
|
|
deviation_avg = math.pi - random.random() * 2 * math.pi
|
|
last_deviation_avg = deviation_avg
|
|
tau = 2 * math.pi
|
|
|
|
# Downsample mono audio
|
|
decimate1 = filters.decimator(DECIMATION)
|
|
|
|
# Deemph + Low-pass filter for mono (L+R) audio
|
|
lo = filters.deemphasis(INPUT_RATE, 75, FM_BANDWIDTH, 120)
|
|
|
|
# Downsample jstereo audio
|
|
decimate2 = filters.decimator(DECIMATION)
|
|
|
|
# Deemph + Low-pass filter for joint-stereo demodulated audio (L-R)
|
|
lo_r = filters.deemphasis(INPUT_RATE, 75, FM_BANDWIDTH, 120)
|
|
|
|
# Band-pass filter for stereo (L-R) modulated audio
|
|
hi = filters.band_pass(INPUT_RATE,
|
|
STEREO_CARRIER - FM_BANDWIDTH, STEREO_CARRIER + FM_BANDWIDTH, 120)
|
|
|
|
# Filter to extract pilot signal
|
|
pilot = filters.band_pass(INPUT_RATE,
|
|
STEREO_CARRIER / 2 - 100, STEREO_CARRIER / 2 + 100, 120)
|
|
|
|
last_angle = 0.0
|
|
remaining_data = b''
|
|
|
|
while True:
|
|
# Ingest 0.1s worth of data
|
|
data = sys.stdin.buffer.read((INPUT_RATE * BYTES_PER_SAMPLE) // 10)
|
|
if not data:
|
|
break
|
|
# TODO JMT: Something about this is broken for BYTES_PER_SAMPLE > 1
|
|
#data = remaining_data + data
|
|
|
|
if len(data) < 2 * BYTES_PER_SAMPLE:
|
|
remaining_data = data
|
|
continue
|
|
|
|
# Save one sample to next batch, and the odd byte if exists
|
|
if len(data) % 2 == 1:
|
|
print("Odd byte, that's odd", file=sys.stderr)
|
|
remaining_data = data[-3:]
|
|
data = data[:-1]
|
|
else:
|
|
remaining_data = data[-2:]
|
|
|
|
samples = len(data) // BYTES_PER_SAMPLE
|
|
|
|
# Find angle (phase) of I/Q pairs
|
|
iqdata = np.frombuffer(data, dtype=FORMAT)
|
|
|
|
if args.verbose:
|
|
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
|
|
|
|
if np.issubdtype(FORMAT, np.integer):
|
|
iinfo = np.iinfo(FORMAT)
|
|
if np.issubdtype(FORMAT, np.unsignedinteger):
|
|
iqdata = iqdata - (iinfo.max / 2.0)
|
|
iqdata = iqdata / (iinfo.max / 2.0)
|
|
else:
|
|
iqdata = iqdata / np.float64(iinfo.max)
|
|
else:
|
|
iqdata = iqdata.astype(np.float64)
|
|
|
|
if args.verbose:
|
|
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
|
|
|
|
iqdata = iqdata.view(complex)
|
|
angles = np.angle(iqdata)
|
|
|
|
# Determine phase rotation between samples
|
|
rotations = np.ediff1d(angles)
|
|
|
|
# Wrap rotations >= +/-180º
|
|
rotations = (rotations + np.pi) % (2 * np.pi) - np.pi
|
|
|
|
# Convert rotations to baseband signal
|
|
output_raw = np.multiply(rotations, DEVIATION_X_SIGNAL)
|
|
output_raw = np.clip(output_raw, -0.999, +0.999)
|
|
|
|
# At this point, output_raw contains two audio signals:
|
|
# L+R (mono-compatible) and L-R (joint-stereo) modulated in AM-SC,
|
|
# carrier 38kHz
|
|
|
|
# Downsample and low-pass L+R (mono) signal
|
|
output_mono = lo.feed(output_raw)
|
|
output_mono = decimate1.feed(output_mono)
|
|
|
|
# Filter pilot tone
|
|
detected_pilot = pilot.feed(output_raw)
|
|
|
|
# Separate ultrasonic L-R signal by high-pass filtering
|
|
output_jstereo_mod = hi.feed(output_raw)
|
|
output_jstereo = []
|
|
|
|
# Demodulate L-R, which is AM-SC with 53kHz carrier
|
|
for n in range(0, len(output_jstereo_mod)):
|
|
# Advance carrier
|
|
pll = (pll + tau * STEREO_CARRIER / INPUT_RATE) % tau
|
|
# Standard demodulation
|
|
output_jstereo.append(math.cos(pll) * output_jstereo_mod[n])
|
|
|
|
# Detect pilot zero-crossing
|
|
cur_pilot = detected_pilot[n]
|
|
zero_crossed = (cur_pilot * last_pilot) <= 0
|
|
last_pilot = cur_pilot
|
|
if not zero_crossed:
|
|
continue
|
|
|
|
# When pilot is at 90º or 270º, carrier should be around 180º
|
|
ideal = math.pi
|
|
deviation = pll - ideal
|
|
if deviation > math.pi:
|
|
deviation -= tau
|
|
deviation_avg = 0.99 * deviation_avg + 0.01 * deviation
|
|
rotation = deviation_avg - last_deviation_avg
|
|
last_deviation_avg = deviation_avg
|
|
|
|
if abs(deviation_avg) > math.pi / 8:
|
|
# big phase deviation, reset PLL
|
|
pll = ideal
|
|
pll = (pll + tau * STEREO_CARRIER / INPUT_RATE) % tau
|
|
deviation_avg = 0.0
|
|
last_deviation_avg = 0.0
|
|
|
|
# Translate rotation to frequency deviation
|
|
STEREO_CARRIER /= (1 + (rotation * 1.05) / tau)
|
|
|
|
|
|
# Downsample, Low-pass/deemphasis demodulated L-R
|
|
output_jstereo = lo_r.feed(output_jstereo)
|
|
output_jstereo = decimate2.feed(output_jstereo)
|
|
|
|
assert len(output_jstereo) == len(output_mono)
|
|
|
|
# Scale to 16-bit and divide by 2 for channel sum
|
|
output_mono = np.multiply(output_mono, 32767 / 2.0)
|
|
output_jstereo = np.multiply(output_jstereo, 32767 / 2.0)
|
|
|
|
# Output stereo by adding or subtracting joint-stereo to mono
|
|
output_left = output_mono + output_jstereo
|
|
output_right = output_mono - output_jstereo
|
|
|
|
# Interleave L and R samples using np trickery
|
|
output = np.empty(len(output_mono) * 2, dtype=output_mono.dtype)
|
|
output[0::2] = output_left
|
|
output[1::2] = output_right
|
|
output = output.astype(int)
|
|
|
|
sys.stdout.buffer.write(struct.pack('<%dh' % len(output), *output))
|