226 lines
6.3 KiB
Python
Executable File
226 lines
6.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# FM demodulator based on I/Q (quadrature) samples
|
|
|
|
#
|
|
# This code belongs to https://github.com/elvis-epx/sdr
|
|
# No licence information is provided.
|
|
#
|
|
|
|
import struct, math, random, sys, numpy, filters, time
|
|
|
|
optimized = "-o" in sys.argv
|
|
debug_mode = "-d" in sys.argv
|
|
disable_pll = "--disable-pll" in sys.argv
|
|
if disable_pll:
|
|
optimized = False
|
|
|
|
if optimized:
|
|
import fastfm # Cython
|
|
|
|
MAX_DEVIATION = 200000.0 # Hz
|
|
INPUT_RATE = 1000000
|
|
OUTPUT_RATE = 50000
|
|
|
|
if debug_mode:
|
|
OUTPUT_RATE=256000
|
|
|
|
DECIMATION = INPUT_RATE / OUTPUT_RATE
|
|
assert DECIMATION == math.floor(DECIMATION)
|
|
|
|
FM_BANDWIDTH = 15000 # Hz
|
|
STEREO_CARRIER = 38000 # Hz
|
|
DEVIATION_X_SIGNAL = 0.999 / (math.pi * MAX_DEVIATION / (INPUT_RATE / 2))
|
|
|
|
pll = math.pi - random.random() * 2 * math.pi
|
|
last_pilot = 0.0
|
|
deviation_avg = math.pi - random.random() * 2 * math.pi
|
|
last_deviation_avg = deviation_avg
|
|
tau = 2 * math.pi
|
|
|
|
# Downsample mono audio
|
|
decimate1 = filters.decimator(DECIMATION)
|
|
|
|
# Deemph + Low-pass filter for mono (L+R) audio
|
|
lo = filters.deemphasis(INPUT_RATE, 75, FM_BANDWIDTH, 120)
|
|
|
|
# Downsample jstereo audio
|
|
decimate2 = filters.decimator(DECIMATION)
|
|
|
|
# Deemph + Low-pass filter for joint-stereo demodulated audio (L-R)
|
|
lo_r = filters.deemphasis(INPUT_RATE, 75, FM_BANDWIDTH, 120)
|
|
|
|
# Band-pass filter for stereo (L-R) modulated audio
|
|
hi = filters.band_pass(INPUT_RATE,
|
|
STEREO_CARRIER - FM_BANDWIDTH, STEREO_CARRIER + FM_BANDWIDTH, 120)
|
|
|
|
# Filter to extract pilot signal
|
|
pilot = filters.band_pass(INPUT_RATE,
|
|
STEREO_CARRIER / 2 - 100, STEREO_CARRIER / 2 + 100, 120)
|
|
|
|
last_angle = 0.0
|
|
remaining_data = b''
|
|
|
|
while True:
|
|
# Ingest 0.1s worth of data
|
|
bytes_per_sample = 1
|
|
data = sys.stdin.buffer.read((INPUT_RATE * bytes_per_sample * 2) // 10)
|
|
if not data:
|
|
break
|
|
#data = remaining_data + data
|
|
|
|
if len(data) < 4:
|
|
remaining_data = data
|
|
continue
|
|
|
|
# Save one sample to next batch, and the odd byte if exists
|
|
if len(data) % 2 == 1:
|
|
print("Odd byte, that's odd", file=sys.stderr)
|
|
remaining_data = data[-3:]
|
|
data = data[:-1]
|
|
else:
|
|
remaining_data = data[-2:]
|
|
|
|
samples = len(data) // (2 * bytes_per_sample)
|
|
|
|
# Find angle (phase) of I/Q pairs
|
|
iqdata = numpy.frombuffer(data, dtype=numpy.int16)
|
|
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
|
|
iqdata = iqdata / (2**15)
|
|
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
|
|
iqdata = iqdata.view(complex)
|
|
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
|
|
|
|
angles = numpy.angle(iqdata)
|
|
|
|
|
|
# Determine phase rotation between samples
|
|
# (Output one element less, that's we always save last sample
|
|
# in remaining_data)
|
|
rotations = numpy.ediff1d(angles)
|
|
|
|
# Wrap rotations >= +/-180º
|
|
rotations = (rotations + numpy.pi) % (2 * numpy.pi) - numpy.pi
|
|
|
|
# Convert rotations to baseband signal
|
|
output_raw = numpy.multiply(rotations, DEVIATION_X_SIGNAL)
|
|
output_raw = numpy.clip(output_raw, -0.999, +0.999)
|
|
|
|
# At this point, output_raw contains two audio signals:
|
|
# L+R (mono-compatible) and L-R (joint-stereo) modulated in AM-SC,
|
|
# carrier 38kHz
|
|
|
|
# Downsample and low-pass L+R (mono) signal
|
|
output_mono = lo.feed(output_raw)
|
|
output_mono = decimate1.feed(output_mono)
|
|
|
|
# Filter pilot tone
|
|
detected_pilot = pilot.feed(output_raw)
|
|
|
|
# Separate ultrasonic L-R signal by high-pass filtering
|
|
output_jstereo_mod = hi.feed(output_raw)
|
|
|
|
# Demodulate L-R, which is AM-SC with 53kHz carrier
|
|
|
|
if optimized:
|
|
output_jstereo, pll, STEREO_CARRIER, \
|
|
last_pilot, deviation_avg, last_deviation_avg = \
|
|
fastfm.demod_stereo(output_jstereo_mod,
|
|
pll,
|
|
STEREO_CARRIER,
|
|
INPUT_RATE,
|
|
detected_pilot,
|
|
last_pilot,
|
|
deviation_avg,
|
|
last_deviation_avg)
|
|
else:
|
|
output_jstereo = []
|
|
|
|
for n in range(0, len(output_jstereo_mod)):
|
|
# Advance carrier
|
|
pll = (pll + tau * STEREO_CARRIER / INPUT_RATE) % tau
|
|
|
|
# Standard demodulation
|
|
output_jstereo.append(math.cos(pll) * output_jstereo_mod[n])
|
|
|
|
if disable_pll:
|
|
continue
|
|
|
|
############ Carrier PLL #################
|
|
|
|
# Detect pilot zero-crossing
|
|
cur_pilot = detected_pilot[n]
|
|
zero_crossed = (cur_pilot * last_pilot) <= 0
|
|
last_pilot = cur_pilot
|
|
if not zero_crossed:
|
|
continue
|
|
|
|
# When pilot is at 90º or 270º, carrier should be around 180º
|
|
# t=0 => cos(t) = 1, cos(2t) = 1
|
|
# t=π/2 => cos(t) = 0, cos(2t) = -1
|
|
# t=π => cos(t) = -1, cos(2t) = 1
|
|
# t=-π/2 => cos(t) = 0, cos(2t) = -1
|
|
ideal = math.pi
|
|
deviation = pll - ideal
|
|
if deviation > math.pi:
|
|
# 350º => -10º
|
|
deviation -= tau
|
|
deviation_avg = 0.99 * deviation_avg + 0.01 * deviation
|
|
rotation = deviation_avg - last_deviation_avg
|
|
last_deviation_avg = deviation_avg
|
|
|
|
if abs(deviation_avg) > math.pi / 8:
|
|
# big phase deviation, reset PLL
|
|
# print("Resetting PLL", file=sys.stderr)
|
|
pll = ideal
|
|
pll = (pll + tau * STEREO_CARRIER / INPUT_RATE) % tau
|
|
deviation_avg = 0.0
|
|
last_deviation_avg = 0.0
|
|
|
|
# Translate rotation to frequency deviation e.g.
|
|
# cos(tau + 3.6º) = cos(1.01 * tau)
|
|
# cos(tau - 9º) = cos(tau * 0.975)
|
|
#
|
|
# Overcorrect by 5% to (try to) sync phase,
|
|
# otherwise only the frequency would be synced.
|
|
|
|
STEREO_CARRIER /= (1 + (rotation * 1.05) / tau)
|
|
|
|
'''
|
|
print("%d deviationavg=%f rotation=%f freq=%f" %
|
|
(n,
|
|
deviation_avg * 180 / math.pi,
|
|
rotation * 180 / math.pi,
|
|
STEREO_CARRIER),
|
|
file=sys.stderr)
|
|
time.sleep(0.05)
|
|
'''
|
|
|
|
# Downsample, Low-pass/deemphasis demodulated L-R
|
|
output_jstereo = lo_r.feed(output_jstereo)
|
|
output_jstereo = decimate2.feed(output_jstereo)
|
|
|
|
assert len(output_jstereo) == len(output_mono)
|
|
|
|
# Scale to 16-bit and divide by 2 for channel sum
|
|
output_mono = numpy.multiply(output_mono, 32767 / 2.0)
|
|
output_jstereo = numpy.multiply(output_jstereo, 32767 / 2.0)
|
|
|
|
# Output stereo by adding or subtracting joint-stereo to mono
|
|
output_left = output_mono + output_jstereo
|
|
output_right = output_mono - output_jstereo
|
|
|
|
if not debug_mode:
|
|
# Interleave L and R samples using NumPy trickery
|
|
output = numpy.empty(len(output_mono) * 2, dtype=output_mono.dtype)
|
|
output[0::2] = output_left
|
|
output[1::2] = output_right
|
|
output = output.astype(int)
|
|
else:
|
|
output = numpy.empty(len(output_mono) * 3, dtype=output_mono.dtype)
|
|
output[0::3] = output_mono
|
|
output[1::3] = output_jstereo
|
|
output[2::3] = numpy.multiply(detected_pilot, 32767)
|
|
output = output.astype(int)
|
|
|
|
sys.stdout.buffer.write(struct.pack('<%dh' % len(output), *output))
|