Working SDRPlay audio out - committing before I break something

This commit is contained in:
Jono Targett 2023-05-09 16:06:45 +09:30
parent 1ef2ee731d
commit 6f2be20997
11 changed files with 353 additions and 23 deletions

83
demo.py Executable file
View File

@ -0,0 +1,83 @@
#! /usr/bin/env python3
#
# Example script for interfacing with SDRPlay radio.
#
# Modified from: https://github.com/pothosware/SoapySDR/wiki/PythonSupport
#
import SoapySDR
from SoapySDR import * #SOAPY_SDR_ constants
import numpy as np
import sys
import struct
#enumerate devices
devices = [dict(device) for device in SoapySDR.Device.enumerate()]
if len(devices) == 0:
print('No SDR devices available.')
sys.exit(1)
#create device instance
sdr = SoapySDR.Device(devices[0])
#apply settings
sdr.setSampleRate(SOAPY_SDR_RX, 0, 1e6)
sdr.setFrequency(SOAPY_SDR_RX, 0, 105500000)
#setup a stream (complex floats)
samples = 10000
buff = np.array([0]*samples*2, np.int16)
rxStream = sdr.setupStream(SOAPY_SDR_RX, SOAPY_SDR_CS16)
sdr.activateStream(rxStream)
#receive some samples
for i in range(1000):
sr = sdr.readStream(rxStream, [buff], samples*2)
print(sr.ret, sr.flags, sr.timeNs, file=sys.stderr)
sys.stdout.buffer.write(struct.pack('=%dh' % len(buff), *buff))
#shutdown the stream
sdr.deactivateStream(rxStream) #stop streaming
sdr.closeStream(rxStream)
'''
#create a re-usable buffer for rx samples
# https://stackoverflow.com/a/32877245
#while True:
sr = sdr.readStream(rxStream, [buff], samples)
#print(sr.ret) #num samples or error code
#print(sr.flags) #flags set by receive operation
#print(sr.timeNs) #timestamp for receive buffer
# we now have a np buffer of [(re_16:1, im_16:1), re_16:2, im_16:2), ...]
# that needs to become a buffer of [re_8:1, im_8:1, re_8:2, im_8:2, ...]
#print(buff)
#output = buff.flatten('F')
#print(output)
#output = np.empty(len(buff) * 2, dtype=np.float32)
#output[0::2] = output_left
#output[1::2] = output_right
#output = output.astype(int)
#print(output)
#scale_factor = 127 / np.max(buff)
# scale the values using numpy.interp
#uint8_buffer = np.interp(buff, (buff.min(), buff.max()), (-127, 127)).astype(np.int8)
output = buff
#output /= (np.max(np.int16) / np.max(np.int8))
#output /= (32768 / 127)
#output = np.divide(output, 1).astype(np.int8)
'''

View File

@ -10,11 +10,10 @@ import SoapySDR
from SoapySDR import * #SOAPY_SDR_ constants from SoapySDR import * #SOAPY_SDR_ constants
import numpy #use numpy for buffers import numpy #use numpy for buffers
import sys import sys
import struct
#enumerate devices #enumerate devices
devices = [dict(device) for device in SoapySDR.Device.enumerate()] devices = [dict(device) for device in SoapySDR.Device.enumerate()]
for device in devices:
print(device)
if len(devices) == 0: if len(devices) == 0:
print('No SDR devices available.') print('No SDR devices available.')
@ -23,12 +22,6 @@ if len(devices) == 0:
#create device instance #create device instance
sdr = SoapySDR.Device(devices[0]) sdr = SoapySDR.Device(devices[0])
#query device info
print(sdr.listAntennas(SOAPY_SDR_RX, 0))
print(sdr.listGains(SOAPY_SDR_RX, 0))
freqs = sdr.getFrequencyRange(SOAPY_SDR_RX, 0)
for freqRange in freqs: print(freqRange)
#apply settings #apply settings
sdr.setSampleRate(SOAPY_SDR_RX, 0, 1e6) sdr.setSampleRate(SOAPY_SDR_RX, 0, 1e6)
sdr.setFrequency(SOAPY_SDR_RX, 0, 912.3e6) sdr.setFrequency(SOAPY_SDR_RX, 0, 912.3e6)
@ -38,14 +31,14 @@ rxStream = sdr.setupStream(SOAPY_SDR_RX, SOAPY_SDR_CF32)
sdr.activateStream(rxStream) #start streaming sdr.activateStream(rxStream) #start streaming
#create a re-usable buffer for rx samples #create a re-usable buffer for rx samples
buff = numpy.array([0]*1024, numpy.complex64) samples = 1000
buff = numpy.array([0]*samples*2, numpy.float32)
#receive some samples #receive some samples
for i in range(10): for i in range(10):
sr = sdr.readStream(rxStream, [buff], len(buff)) sr = sdr.readStream(rxStream, [buff], samples)
print(sr.ret) #num samples or error code
print(sr.flags) #flags set by receive operation sys.stdout.buffer.write(struct.pack('=%df' % len(buff), *buff))
print(sr.timeNs) #timestamp for receive buffer
#shutdown the stream #shutdown the stream
sdr.deactivateStream(rxStream) #stop streaming sdr.deactivateStream(rxStream) #stop streaming

12
fm1s.py
View File

@ -18,10 +18,8 @@ if optimized:
import fastfm # Cython import fastfm # Cython
MAX_DEVIATION = 200000.0 # Hz MAX_DEVIATION = 200000.0 # Hz
INPUT_RATE = 256000 INPUT_RATE = 1000000
OUTPUT_RATE = 32000 OUTPUT_RATE = 50000
#INPUT_RATE = 1e6
#OUTPUT_RATE = 50000
if debug_mode: if debug_mode:
OUTPUT_RATE=256000 OUTPUT_RATE=256000
@ -67,7 +65,7 @@ while True:
data = sys.stdin.buffer.read((INPUT_RATE * 2) // 10) data = sys.stdin.buffer.read((INPUT_RATE * 2) // 10)
if not data: if not data:
break break
data = remaining_data + data #data = remaining_data + data
if len(data) < 4: if len(data) < 4:
remaining_data = data remaining_data = data
@ -85,12 +83,16 @@ while True:
# Find angle (phase) of I/Q pairs # Find angle (phase) of I/Q pairs
iqdata = numpy.frombuffer(data, dtype=numpy.uint8) iqdata = numpy.frombuffer(data, dtype=numpy.uint8)
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
iqdata = iqdata - 127.5 iqdata = iqdata - 127.5
iqdata = iqdata / 128.0 iqdata = iqdata / 128.0
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
iqdata = iqdata.view(complex) iqdata = iqdata.view(complex)
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
angles = numpy.angle(iqdata) angles = numpy.angle(iqdata)
# Determine phase rotation between samples # Determine phase rotation between samples
# (Output one element less, that's we always save last sample # (Output one element less, that's we always save last sample
# in remaining_data) # in remaining_data)

225
fm1s_int16.py Executable file
View File

@ -0,0 +1,225 @@
#!/usr/bin/env python3
# FM demodulator based on I/Q (quadrature) samples
#
# This code belongs to https://github.com/elvis-epx/sdr
# No licence information is provided.
#
import struct, math, random, sys, numpy, filters, time
optimized = "-o" in sys.argv
debug_mode = "-d" in sys.argv
disable_pll = "--disable-pll" in sys.argv
if disable_pll:
optimized = False
if optimized:
import fastfm # Cython
MAX_DEVIATION = 200000.0 # Hz
INPUT_RATE = 1000000
OUTPUT_RATE = 50000
if debug_mode:
OUTPUT_RATE=256000
DECIMATION = INPUT_RATE / OUTPUT_RATE
assert DECIMATION == math.floor(DECIMATION)
FM_BANDWIDTH = 15000 # Hz
STEREO_CARRIER = 38000 # Hz
DEVIATION_X_SIGNAL = 0.999 / (math.pi * MAX_DEVIATION / (INPUT_RATE / 2))
pll = math.pi - random.random() * 2 * math.pi
last_pilot = 0.0
deviation_avg = math.pi - random.random() * 2 * math.pi
last_deviation_avg = deviation_avg
tau = 2 * math.pi
# Downsample mono audio
decimate1 = filters.decimator(DECIMATION)
# Deemph + Low-pass filter for mono (L+R) audio
lo = filters.deemphasis(INPUT_RATE, 75, FM_BANDWIDTH, 120)
# Downsample jstereo audio
decimate2 = filters.decimator(DECIMATION)
# Deemph + Low-pass filter for joint-stereo demodulated audio (L-R)
lo_r = filters.deemphasis(INPUT_RATE, 75, FM_BANDWIDTH, 120)
# Band-pass filter for stereo (L-R) modulated audio
hi = filters.band_pass(INPUT_RATE,
STEREO_CARRIER - FM_BANDWIDTH, STEREO_CARRIER + FM_BANDWIDTH, 120)
# Filter to extract pilot signal
pilot = filters.band_pass(INPUT_RATE,
STEREO_CARRIER / 2 - 100, STEREO_CARRIER / 2 + 100, 120)
last_angle = 0.0
remaining_data = b''
while True:
# Ingest 0.1s worth of data
bytes_per_sample = 1
data = sys.stdin.buffer.read((INPUT_RATE * bytes_per_sample * 2) // 10)
if not data:
break
#data = remaining_data + data
if len(data) < 4:
remaining_data = data
continue
# Save one sample to next batch, and the odd byte if exists
if len(data) % 2 == 1:
print("Odd byte, that's odd", file=sys.stderr)
remaining_data = data[-3:]
data = data[:-1]
else:
remaining_data = data[-2:]
samples = len(data) // (2 * bytes_per_sample)
# Find angle (phase) of I/Q pairs
iqdata = numpy.frombuffer(data, dtype=numpy.int16)
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
iqdata = iqdata / (2**15)
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
iqdata = iqdata.view(complex)
print(iqdata.dtype, iqdata.shape, iqdata, file=sys.stderr)
angles = numpy.angle(iqdata)
# Determine phase rotation between samples
# (Output one element less, that's we always save last sample
# in remaining_data)
rotations = numpy.ediff1d(angles)
# Wrap rotations >= +/-180º
rotations = (rotations + numpy.pi) % (2 * numpy.pi) - numpy.pi
# Convert rotations to baseband signal
output_raw = numpy.multiply(rotations, DEVIATION_X_SIGNAL)
output_raw = numpy.clip(output_raw, -0.999, +0.999)
# At this point, output_raw contains two audio signals:
# L+R (mono-compatible) and L-R (joint-stereo) modulated in AM-SC,
# carrier 38kHz
# Downsample and low-pass L+R (mono) signal
output_mono = lo.feed(output_raw)
output_mono = decimate1.feed(output_mono)
# Filter pilot tone
detected_pilot = pilot.feed(output_raw)
# Separate ultrasonic L-R signal by high-pass filtering
output_jstereo_mod = hi.feed(output_raw)
# Demodulate L-R, which is AM-SC with 53kHz carrier
if optimized:
output_jstereo, pll, STEREO_CARRIER, \
last_pilot, deviation_avg, last_deviation_avg = \
fastfm.demod_stereo(output_jstereo_mod,
pll,
STEREO_CARRIER,
INPUT_RATE,
detected_pilot,
last_pilot,
deviation_avg,
last_deviation_avg)
else:
output_jstereo = []
for n in range(0, len(output_jstereo_mod)):
# Advance carrier
pll = (pll + tau * STEREO_CARRIER / INPUT_RATE) % tau
# Standard demodulation
output_jstereo.append(math.cos(pll) * output_jstereo_mod[n])
if disable_pll:
continue
############ Carrier PLL #################
# Detect pilot zero-crossing
cur_pilot = detected_pilot[n]
zero_crossed = (cur_pilot * last_pilot) <= 0
last_pilot = cur_pilot
if not zero_crossed:
continue
# When pilot is at 90º or 270º, carrier should be around 180º
# t=0 => cos(t) = 1, cos(2t) = 1
# t=π/2 => cos(t) = 0, cos(2t) = -1
# t=π => cos(t) = -1, cos(2t) = 1
# t=-π/2 => cos(t) = 0, cos(2t) = -1
ideal = math.pi
deviation = pll - ideal
if deviation > math.pi:
# 350º => -10º
deviation -= tau
deviation_avg = 0.99 * deviation_avg + 0.01 * deviation
rotation = deviation_avg - last_deviation_avg
last_deviation_avg = deviation_avg
if abs(deviation_avg) > math.pi / 8:
# big phase deviation, reset PLL
# print("Resetting PLL", file=sys.stderr)
pll = ideal
pll = (pll + tau * STEREO_CARRIER / INPUT_RATE) % tau
deviation_avg = 0.0
last_deviation_avg = 0.0
# Translate rotation to frequency deviation e.g.
# cos(tau + 3.6º) = cos(1.01 * tau)
# cos(tau - 9º) = cos(tau * 0.975)
#
# Overcorrect by 5% to (try to) sync phase,
# otherwise only the frequency would be synced.
STEREO_CARRIER /= (1 + (rotation * 1.05) / tau)
'''
print("%d deviationavg=%f rotation=%f freq=%f" %
(n,
deviation_avg * 180 / math.pi,
rotation * 180 / math.pi,
STEREO_CARRIER),
file=sys.stderr)
time.sleep(0.05)
'''
# Downsample, Low-pass/deemphasis demodulated L-R
output_jstereo = lo_r.feed(output_jstereo)
output_jstereo = decimate2.feed(output_jstereo)
assert len(output_jstereo) == len(output_mono)
# Scale to 16-bit and divide by 2 for channel sum
output_mono = numpy.multiply(output_mono, 32767 / 2.0)
output_jstereo = numpy.multiply(output_jstereo, 32767 / 2.0)
# Output stereo by adding or subtracting joint-stereo to mono
output_left = output_mono + output_jstereo
output_right = output_mono - output_jstereo
if not debug_mode:
# Interleave L and R samples using NumPy trickery
output = numpy.empty(len(output_mono) * 2, dtype=output_mono.dtype)
output[0::2] = output_left
output[1::2] = output_right
output = output.astype(int)
else:
output = numpy.empty(len(output_mono) * 3, dtype=output_mono.dtype)
output[0::3] = output_mono
output[1::3] = output_jstereo
output[2::3] = numpy.multiply(detected_pilot, 32767)
output = output.astype(int)
sys.stdout.buffer.write(struct.pack('<%dh' % len(output), *output))

View File

@ -1,6 +1,4 @@
#!/bin/sh -x #!/bin/sh
# Decode and play stereo broadcast FM in realtime.
# #
# This code belongs to https://github.com/elvis-epx/sdr # This code belongs to https://github.com/elvis-epx/sdr
@ -8,4 +6,16 @@
# #
rtl_sdr -f 106.3M -s 256k - | ./fm1s.py | sox -t raw -r 32000 -b 16 -c 2 -L -e signed-integer - -d #./example.py | ./fm1s.py | sox -t raw -r 50000 -b 16 -c 2 -L -e signed-integer - -d
#./example.py > buffer.iq
#./demo.py > sdrplay_buffer.iq
./fm1s_2.py < sdrplay_buffer.iq
# Run the radio direct to audio. Something about 1M samples and 50000 output rate sounds ass, but it works
#rtl_sdr -f 105.5M -s 1M - | ./fm1s.py | sox -t raw -r 50000 -b 16 -c 2 -L -e signed-integer - -d
# Get data from the nooelec device
#rtl_sdr -f 105.5M -s 1M -n 10000 nooelec_buffer.iq
./fm1s.py < nooelec_buffer.iq

7
nooelec Executable file
View File

@ -0,0 +1,7 @@
#! /bin/bash
if ! [ -f nooelec_buffer.iq ]; then
rtl_sdr -f 105.5M -s1M -n 1000000 nooelec_buffer.iq
fi
./fm1s.py < nooelec_buffer.iq > nooelec_buffer.raw
./play.sh < nooelec_buffer.raw

BIN
nooelec_buffer.iq Normal file

Binary file not shown.

3
play.sh Executable file
View File

@ -0,0 +1,3 @@
#! /bin/bash
sox -t raw -r 50000 -b 16 -c 2 -L -e signed-integer - -d

7
sdrplay Executable file
View File

@ -0,0 +1,7 @@
#! /bin/bash
if ! [ -f sdrplay_int16.iq ]; then
./demo.py > sdrplay_int16.iq
fi
./fm1s_int16.py < sdrplay_int16.iq > sdrplay_int16.raw
./play.sh < sdrplay_int16.raw

BIN
sdrplay_int16.iq Normal file

Binary file not shown.

2
setup
View File

@ -1,5 +1,5 @@
#! /bin/bash #! /bin/bash
sudo apt install rtl-sdr portaudio19-dev python3-all-dev sudo apt install rtl-sdr sox portaudio19-dev python3-all-dev
pip install pyaudio filters pip install pyaudio filters