Working FM radio demodulator for NESDR smart radio
This commit is contained in:
parent
9c2b1c0ad5
commit
1ef2ee731d
165
filters.py
Normal file
165
filters.py
Normal file
@ -0,0 +1,165 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Common DSP filters using pure Python
|
||||
|
||||
#
|
||||
# This code belongs to https://github.com/elvis-epx/sdr
|
||||
# No licence information is provided.
|
||||
#
|
||||
|
||||
import numpy, math, sys, time
|
||||
from numpy import fft
|
||||
|
||||
def impulse(mask):
|
||||
''' Convert frequency domain mask to time-domain '''
|
||||
# Negative side, a mirror of positive side
|
||||
negatives = mask[1:-1]
|
||||
negatives.reverse()
|
||||
mask = mask + negatives
|
||||
fft_length = len(mask)
|
||||
|
||||
# Convert FFT filter mask to FIR coefficients
|
||||
impulse_response = fft.ifft(mask).real.tolist()
|
||||
|
||||
# swap left and right sides
|
||||
left = impulse_response[:fft_length // 2]
|
||||
right = impulse_response[fft_length // 2:]
|
||||
impulse_response = right + left
|
||||
|
||||
return impulse_response
|
||||
|
||||
|
||||
def lo_mask(sample_rate, tap_count, freq, dboct):
|
||||
''' Create a freq domain mask for a lowpass filter '''
|
||||
order = dboct / 6
|
||||
max_freq = sample_rate / 2.0
|
||||
f2s = max_freq / (tap_count / 2.0)
|
||||
# Convert freq to filter step unit
|
||||
freq /= f2s
|
||||
l = tap_count // 2
|
||||
mask = []
|
||||
for f in range(0, l+1):
|
||||
H = 1.0 / ( 1 + (f / freq) ** (2 * order) ) ** 0.5
|
||||
mask.append(H)
|
||||
return mask
|
||||
|
||||
|
||||
def hi_mask(sample_rate, tap_count, freq, dboct):
|
||||
''' Create a freq domain mask for a highpass filter '''
|
||||
order = dboct / 6
|
||||
max_freq = sample_rate / 2.0
|
||||
f2s = max_freq / (tap_count / 2.0)
|
||||
# Convert freq frequency to filter step unit
|
||||
freq /= f2s
|
||||
l = tap_count // 2
|
||||
mask = []
|
||||
for f in range(0, l+1):
|
||||
H = 1.0 / ( 1 + (freq / (f + 0.0001)) ** (2 * order) ) ** 0.5
|
||||
mask.append(H)
|
||||
return mask
|
||||
|
||||
|
||||
def combine_masks(mask1, mask2):
|
||||
''' Combine two filter masks '''
|
||||
assert len(mask1) == len(mask2)
|
||||
return [ mask1[i] * mask2[i] for i in range(0, len(mask1)) ]
|
||||
|
||||
|
||||
def taps(sample_rate, freq, dboct, is_highpass):
|
||||
cutoff_octaves = 60 / dboct
|
||||
|
||||
if is_highpass:
|
||||
cutoff = freq / 2 ** cutoff_octaves
|
||||
else:
|
||||
cutoff = freq * 2 ** cutoff_octaves
|
||||
cutoff = min(cutoff, sample_rate / 2)
|
||||
|
||||
transition_band = abs(freq - cutoff)
|
||||
Bt = transition_band / sample_rate
|
||||
taps = int(60 / (22 * Bt))
|
||||
# print("Freq=%f,%f number of taps: %d" % (freq, cutoff, taps), file=sys.stderr)
|
||||
return taps
|
||||
|
||||
|
||||
class filter:
|
||||
def __init__(self, sample_rate, cutoff):
|
||||
raise "Abstract"
|
||||
|
||||
def feed(self, original):
|
||||
unfiltered = numpy.concatenate((self.buf, original))
|
||||
self.buf = unfiltered[-len(self.coefs):]
|
||||
filtered = numpy.convolve(unfiltered, self.coefs, mode='valid')
|
||||
assert len(filtered) == len(original) + 1
|
||||
return filtered[1:]
|
||||
|
||||
|
||||
class low_pass(filter):
|
||||
def __init__(self, sample_rate, f, dbo):
|
||||
tap_count = taps(sample_rate, f, dbo, False)
|
||||
mask = lo_mask(sample_rate, tap_count, f, dbo)
|
||||
self.coefs = impulse(mask)
|
||||
self.buf = [ 0 for n in self.coefs ]
|
||||
|
||||
|
||||
class high_pass(filter):
|
||||
def __init__(self, sample_rate, f, dbo):
|
||||
tap_count = taps(sample_rate, f, dbo, True)
|
||||
mask = hi_mask(sample_rate, tap_count, f, dbo)
|
||||
self.coefs = impulse(mask)
|
||||
self.buf = [ 0 for n in self.coefs ]
|
||||
|
||||
|
||||
class band_pass(filter):
|
||||
def __init__(self, sample_rate, lo, hi, dbo):
|
||||
tap_count = max(taps(sample_rate, lo, dbo, True),
|
||||
taps(sample_rate, hi, dbo, False))
|
||||
lomask = lo_mask(sample_rate, tap_count, hi, dbo)
|
||||
himask = hi_mask(sample_rate, tap_count, lo, dbo)
|
||||
mask = combine_masks(lomask, himask)
|
||||
self.coefs = impulse(mask)
|
||||
self.buf = [ 0 for n in self.coefs ]
|
||||
|
||||
|
||||
class deemphasis(filter):
|
||||
def __init__(self, sample_rate, us, hi, final_dbo):
|
||||
# us = RC constant of the hypothetical deemphasis filter
|
||||
us /= 1000000
|
||||
# 0..lo is not deemphasized
|
||||
lo = 1.0 / (2 * math.pi * us)
|
||||
# attenuation from lo to hi should be 10dB
|
||||
octaves = math.log(hi / lo) / math.log(2)
|
||||
# slope in dB/octave of deemphasis filter
|
||||
dedbo = 10 / octaves
|
||||
|
||||
tap_count = max(taps(sample_rate, lo, dedbo, False),
|
||||
taps(sample_rate, hi, final_dbo, False))
|
||||
|
||||
# Calculate deemphasis filter
|
||||
demask = lo_mask(sample_rate, tap_count, lo, dedbo)
|
||||
# Calculate low-pass filter after deemphasis
|
||||
fmask = lo_mask(sample_rate, tap_count, hi, final_dbo)
|
||||
|
||||
mask = combine_masks(demask, fmask)
|
||||
self.coefs = impulse(mask)
|
||||
self.buf = [ 0 for n in self.coefs ]
|
||||
|
||||
|
||||
class decimator(filter):
|
||||
def __init__(self, factor):
|
||||
self.buf2 = []
|
||||
self.factor = int(factor)
|
||||
|
||||
def feed(self, original):
|
||||
original = numpy.concatenate((self.buf2, original))
|
||||
|
||||
# Gets the last n-th sample of every n (n = factor)
|
||||
# If e.g. gets 12 samples, gets s[4] and s[9], and
|
||||
# stoves s[10:] to the next round
|
||||
'''
|
||||
decimated = [ original[ self.factor * i + self.factor - 1 ] \
|
||||
for i in range(0, len(original) // self.factor) ]
|
||||
'''
|
||||
decimated = original[(self.factor - 1)::self.factor]
|
||||
self.buf2 = original[:-len(original) % self.factor]
|
||||
|
||||
return decimated
|
||||
223
fm1s.py
Executable file
223
fm1s.py
Executable file
@ -0,0 +1,223 @@
|
||||
#!/usr/bin/env python3
|
||||
# FM demodulator based on I/Q (quadrature) samples
|
||||
|
||||
#
|
||||
# This code belongs to https://github.com/elvis-epx/sdr
|
||||
# No licence information is provided.
|
||||
#
|
||||
|
||||
import struct, math, random, sys, numpy, filters, time
|
||||
|
||||
optimized = "-o" in sys.argv
|
||||
debug_mode = "-d" in sys.argv
|
||||
disable_pll = "--disable-pll" in sys.argv
|
||||
if disable_pll:
|
||||
optimized = False
|
||||
|
||||
if optimized:
|
||||
import fastfm # Cython
|
||||
|
||||
MAX_DEVIATION = 200000.0 # Hz
|
||||
INPUT_RATE = 256000
|
||||
OUTPUT_RATE = 32000
|
||||
#INPUT_RATE = 1e6
|
||||
#OUTPUT_RATE = 50000
|
||||
|
||||
if debug_mode:
|
||||
OUTPUT_RATE=256000
|
||||
|
||||
DECIMATION = INPUT_RATE / OUTPUT_RATE
|
||||
assert DECIMATION == math.floor(DECIMATION)
|
||||
|
||||
FM_BANDWIDTH = 15000 # Hz
|
||||
STEREO_CARRIER = 38000 # Hz
|
||||
DEVIATION_X_SIGNAL = 0.999 / (math.pi * MAX_DEVIATION / (INPUT_RATE / 2))
|
||||
|
||||
pll = math.pi - random.random() * 2 * math.pi
|
||||
last_pilot = 0.0
|
||||
deviation_avg = math.pi - random.random() * 2 * math.pi
|
||||
last_deviation_avg = deviation_avg
|
||||
tau = 2 * math.pi
|
||||
|
||||
# Downsample mono audio
|
||||
decimate1 = filters.decimator(DECIMATION)
|
||||
|
||||
# Deemph + Low-pass filter for mono (L+R) audio
|
||||
lo = filters.deemphasis(INPUT_RATE, 75, FM_BANDWIDTH, 120)
|
||||
|
||||
# Downsample jstereo audio
|
||||
decimate2 = filters.decimator(DECIMATION)
|
||||
|
||||
# Deemph + Low-pass filter for joint-stereo demodulated audio (L-R)
|
||||
lo_r = filters.deemphasis(INPUT_RATE, 75, FM_BANDWIDTH, 120)
|
||||
|
||||
# Band-pass filter for stereo (L-R) modulated audio
|
||||
hi = filters.band_pass(INPUT_RATE,
|
||||
STEREO_CARRIER - FM_BANDWIDTH, STEREO_CARRIER + FM_BANDWIDTH, 120)
|
||||
|
||||
# Filter to extract pilot signal
|
||||
pilot = filters.band_pass(INPUT_RATE,
|
||||
STEREO_CARRIER / 2 - 100, STEREO_CARRIER / 2 + 100, 120)
|
||||
|
||||
last_angle = 0.0
|
||||
remaining_data = b''
|
||||
|
||||
while True:
|
||||
# Ingest 0.1s worth of data
|
||||
data = sys.stdin.buffer.read((INPUT_RATE * 2) // 10)
|
||||
if not data:
|
||||
break
|
||||
data = remaining_data + data
|
||||
|
||||
if len(data) < 4:
|
||||
remaining_data = data
|
||||
continue
|
||||
|
||||
# Save one sample to next batch, and the odd byte if exists
|
||||
if len(data) % 2 == 1:
|
||||
print("Odd byte, that's odd", file=sys.stderr)
|
||||
remaining_data = data[-3:]
|
||||
data = data[:-1]
|
||||
else:
|
||||
remaining_data = data[-2:]
|
||||
|
||||
samples = len(data) // 2
|
||||
|
||||
# Find angle (phase) of I/Q pairs
|
||||
iqdata = numpy.frombuffer(data, dtype=numpy.uint8)
|
||||
iqdata = iqdata - 127.5
|
||||
iqdata = iqdata / 128.0
|
||||
iqdata = iqdata.view(complex)
|
||||
|
||||
angles = numpy.angle(iqdata)
|
||||
|
||||
# Determine phase rotation between samples
|
||||
# (Output one element less, that's we always save last sample
|
||||
# in remaining_data)
|
||||
rotations = numpy.ediff1d(angles)
|
||||
|
||||
# Wrap rotations >= +/-180º
|
||||
rotations = (rotations + numpy.pi) % (2 * numpy.pi) - numpy.pi
|
||||
|
||||
# Convert rotations to baseband signal
|
||||
output_raw = numpy.multiply(rotations, DEVIATION_X_SIGNAL)
|
||||
output_raw = numpy.clip(output_raw, -0.999, +0.999)
|
||||
|
||||
# At this point, output_raw contains two audio signals:
|
||||
# L+R (mono-compatible) and L-R (joint-stereo) modulated in AM-SC,
|
||||
# carrier 38kHz
|
||||
|
||||
# Downsample and low-pass L+R (mono) signal
|
||||
output_mono = lo.feed(output_raw)
|
||||
output_mono = decimate1.feed(output_mono)
|
||||
|
||||
# Filter pilot tone
|
||||
detected_pilot = pilot.feed(output_raw)
|
||||
|
||||
# Separate ultrasonic L-R signal by high-pass filtering
|
||||
output_jstereo_mod = hi.feed(output_raw)
|
||||
|
||||
# Demodulate L-R, which is AM-SC with 53kHz carrier
|
||||
|
||||
if optimized:
|
||||
output_jstereo, pll, STEREO_CARRIER, \
|
||||
last_pilot, deviation_avg, last_deviation_avg = \
|
||||
fastfm.demod_stereo(output_jstereo_mod,
|
||||
pll,
|
||||
STEREO_CARRIER,
|
||||
INPUT_RATE,
|
||||
detected_pilot,
|
||||
last_pilot,
|
||||
deviation_avg,
|
||||
last_deviation_avg)
|
||||
else:
|
||||
output_jstereo = []
|
||||
|
||||
for n in range(0, len(output_jstereo_mod)):
|
||||
# Advance carrier
|
||||
pll = (pll + tau * STEREO_CARRIER / INPUT_RATE) % tau
|
||||
|
||||
# Standard demodulation
|
||||
output_jstereo.append(math.cos(pll) * output_jstereo_mod[n])
|
||||
|
||||
if disable_pll:
|
||||
continue
|
||||
|
||||
############ Carrier PLL #################
|
||||
|
||||
# Detect pilot zero-crossing
|
||||
cur_pilot = detected_pilot[n]
|
||||
zero_crossed = (cur_pilot * last_pilot) <= 0
|
||||
last_pilot = cur_pilot
|
||||
if not zero_crossed:
|
||||
continue
|
||||
|
||||
# When pilot is at 90º or 270º, carrier should be around 180º
|
||||
# t=0 => cos(t) = 1, cos(2t) = 1
|
||||
# t=π/2 => cos(t) = 0, cos(2t) = -1
|
||||
# t=π => cos(t) = -1, cos(2t) = 1
|
||||
# t=-π/2 => cos(t) = 0, cos(2t) = -1
|
||||
ideal = math.pi
|
||||
deviation = pll - ideal
|
||||
if deviation > math.pi:
|
||||
# 350º => -10º
|
||||
deviation -= tau
|
||||
deviation_avg = 0.99 * deviation_avg + 0.01 * deviation
|
||||
rotation = deviation_avg - last_deviation_avg
|
||||
last_deviation_avg = deviation_avg
|
||||
|
||||
if abs(deviation_avg) > math.pi / 8:
|
||||
# big phase deviation, reset PLL
|
||||
# print("Resetting PLL", file=sys.stderr)
|
||||
pll = ideal
|
||||
pll = (pll + tau * STEREO_CARRIER / INPUT_RATE) % tau
|
||||
deviation_avg = 0.0
|
||||
last_deviation_avg = 0.0
|
||||
|
||||
# Translate rotation to frequency deviation e.g.
|
||||
# cos(tau + 3.6º) = cos(1.01 * tau)
|
||||
# cos(tau - 9º) = cos(tau * 0.975)
|
||||
#
|
||||
# Overcorrect by 5% to (try to) sync phase,
|
||||
# otherwise only the frequency would be synced.
|
||||
|
||||
STEREO_CARRIER /= (1 + (rotation * 1.05) / tau)
|
||||
|
||||
'''
|
||||
print("%d deviationavg=%f rotation=%f freq=%f" %
|
||||
(n,
|
||||
deviation_avg * 180 / math.pi,
|
||||
rotation * 180 / math.pi,
|
||||
STEREO_CARRIER),
|
||||
file=sys.stderr)
|
||||
time.sleep(0.05)
|
||||
'''
|
||||
|
||||
# Downsample, Low-pass/deemphasis demodulated L-R
|
||||
output_jstereo = lo_r.feed(output_jstereo)
|
||||
output_jstereo = decimate2.feed(output_jstereo)
|
||||
|
||||
assert len(output_jstereo) == len(output_mono)
|
||||
|
||||
# Scale to 16-bit and divide by 2 for channel sum
|
||||
output_mono = numpy.multiply(output_mono, 32767 / 2.0)
|
||||
output_jstereo = numpy.multiply(output_jstereo, 32767 / 2.0)
|
||||
|
||||
# Output stereo by adding or subtracting joint-stereo to mono
|
||||
output_left = output_mono + output_jstereo
|
||||
output_right = output_mono - output_jstereo
|
||||
|
||||
if not debug_mode:
|
||||
# Interleave L and R samples using NumPy trickery
|
||||
output = numpy.empty(len(output_mono) * 2, dtype=output_mono.dtype)
|
||||
output[0::2] = output_left
|
||||
output[1::2] = output_right
|
||||
output = output.astype(int)
|
||||
else:
|
||||
output = numpy.empty(len(output_mono) * 3, dtype=output_mono.dtype)
|
||||
output[0::3] = output_mono
|
||||
output[1::3] = output_jstereo
|
||||
output[2::3] = numpy.multiply(detected_pilot, 32767)
|
||||
output = output.astype(int)
|
||||
|
||||
sys.stdout.buffer.write(struct.pack('<%dh' % len(output), *output))
|
||||
11
fm_rt_stereo
Executable file
11
fm_rt_stereo
Executable file
@ -0,0 +1,11 @@
|
||||
#!/bin/sh -x
|
||||
|
||||
# Decode and play stereo broadcast FM in realtime.
|
||||
|
||||
#
|
||||
# This code belongs to https://github.com/elvis-epx/sdr
|
||||
# No licence information is provided.
|
||||
#
|
||||
|
||||
|
||||
rtl_sdr -f 106.3M -s 256k - | ./fm1s.py | sox -t raw -r 32000 -b 16 -c 2 -L -e signed-integer - -d
|
||||
Loading…
Reference in New Issue
Block a user